Use this URL to cite or link to this record in EThOS:
Title: Challenges imposed by user's mobility in future HetNet : offloading and mobility management
Author: Mahbas, Ali
ISNI:       0000 0004 6421 3144
Awarding Body: University of Kent
Current Institution: University of Kent
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
The users' mobility imposes challenges to mobility management and, the offloading process, which hinder the conventional heterogeneous networks (HetNets) in meeting the huge data traffic requirements of the future. In this thesis, a trio-connectivity (TC), which includes a control-plane (C-plane), a user-plane (U-plane) and an indication-plane (I-plane), is proposed to tackle these challenges. Especially, the I-plane is created as an indicator to help the user equipment (UE) identify and discover the small cells in the system prior to offloading her from the overloaded cells e.g. macro cells, to the cells with abundant resources e.g. small cells. In order to show the advantages of the proposed TC structure, a comparison between the TC and the dual-connectivity (DC) is presented in this thesis, in terms of uplink energy efficiency (ULEE) and energy consumption. Furthermore, the complexity of mobility management is addressed in this thesis as the HetNets will have to handle a large number of UEs and their frequent handoffs due to very dense small-footprint small cells. Considering an accurate mobility framework is essential not only to find the potential offloading to the small cells but also to show the mobility impact on the quality of service (QoS). This thesis presents a framework to model and derive the coverage of small cells, the cell sojourn time and the handoff rate in a multi-tier HetNet by taking into account the overlap coverage among the small cells. The results show the effects of a number of parameters, including the density and the transmit power of the small cells and the power control factor, on the system performance. They also show that the TC can outperform the DC in dense HetNets in terms of energy efficiency and energy consumption.
Supervisor: Wang, Jiangzhou Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available