Use this URL to cite or link to this record in EThOS:
Title: Intelligent data-driven reverse engineering of software design patterns
Author: Alhusain, Sultan
ISNI:       0000 0004 6351 1465
Awarding Body: De Montfort University
Current Institution: De Montfort University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Recognising implemented instances of Design Patterns (DPs) in software design discloses and recovers a wealth of information about the intention of the original designers and the rationale of their design decisions. Because it is often the case that the documentation available for software systems, if any, is poor and/or obsolete, recovering such information can be of great help and importance for maintenance tasks. Since DPs are abstractly and vaguely defined, a set of software classes with exactly the same relationships as expected for a DP instance may actually be only accidentally similar. On the other hand, a set of classes with relationships that are to an extent different from the typically expected can still be a true DP instance. The deciding factor is mainly whether or not the set of classes is actually intended to solve the design problem addressed by the DP, which makes the intent a fundamental and defining characteristic of DPs. Discerning the intent of potential instances requires building complex models that cannot be built using the information known about DPs. So, a paradigm shift in DP recognition to fully machine learning based approaches is required. The problem is that there exists no accurate and sufficiently large DP datasets and it is difficult to manually construct one. Also, there is a lack of research on the feature set that should be used in DP recognition. The main aim of this thesis is to enable the paradigm shift by laying down an accurate, comprehensive and information-rich foundation of feature and data sets. To achieve this aim, a large set of features is developed to cover a wide range of design aspects, with a particular focus on the design intent. This set serves as a global feature set from which different subsets can be objectively selected for different DPs. A new and feasible approach for DP dataset construction is designed and used to construct training datasets. The feature and data sets are then used experimentally to build and train DP classifiers. The results demonstrate the accuracy and utility of the sets introduced, and show that fully machine learning based approaches do provide the appropriate and well-equipped solutions to the problem of DP recognition.
Supervisor: Not available Sponsor: Saudi Cultural Bureau
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available