Use this URL to cite or link to this record in EThOS:
Title: Single ion coupled to a high-finesse optical fibre cavity for cQED in the strong coupling regime
Author: Kassa, Ezra
ISNI:       0000 0004 6348 4380
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The research undertaken unites two distinct areas of quantum information processing: single ions stored in radio-frequency traps and single photons in optical fibres. Strings of ions are presently the most successful implementation of quantum computing, with elementary quantum algorithm and quantum simulations realised. The principal challenge in the field is to enhance the quantum processing power by scaling up current devices to larger systems. We pursue one of the most promising strategies: distributed quantum computation in which multiple small-scale ion processors are interlinked by exchanging photonic quantum bits via optical fibres. This requires a coherent quantum interface between ions and photons, mapping ionic to photonic quantum states and vice versa. To maximise fidelity and the success rate of the scheme, the interaction of ions and photons must take place in a microscopic optical cavity with high finesse. To this end, single 40Ca+ were trapped in a radio-frequency ion trap whose trapping electrodes are hollow cylinders. Optical fibres with mirrors machined on the facets are inserted into the electrodes to form a Fabry-Pérot cavity. Because the fibres are shielded by the electrodes the detrimental distortion of the trapping field due to their presence is suppressed and ions can be trapped for several hours. 40Ca+ has a -type energy level scheme wherein the ion is cooled on the 42P1/2 ⇔ 42S1/2 transition and the cavity is tuned to the 42P1/2 ⇔ 32D3/2 transition. This thesis reports the successful coupling of single ions to a high finesse optical fibre based cavity, with coupling strength g = 2π · 4:6 MHz. The cavity has length 367 μm, finesse of 40,000 and linewidth 2k = 2π · 9:4 MHz. In this coupling regime, the enhancement of the ion's emission rate through the Purcell effect was observed. Further, anti-correlation was observed in the emission rates between the P1/2 ⇔ D3/2 and P1/2 ⇔ S1/2 transitions with an effective emission rate suppression of up to 60% in the latter transition. The built system offers greater promises. Once the position in the cavity mode has been optimised we expect to reach the long-sought after strong coupling regime with (g, k, y) = 2π · (12:2; 4:7; 11:2) MHz.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC0793 Elementary particle physics