Use this URL to cite or link to this record in EThOS:
Title: Robust stability analysis of power electronic systems
Author: Sumsurooah, Sharmila
ISNI:       0000 0004 6350 7263
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Power electronics is the enabling technology that can put transportation on a more sustainable pathway. The key problem with power electronic (PE) systems is that they are prone to instability. Classical techniques are insufficient at assessing the stability of these systems, as they do not take into account the uncertain nature of physical systems. This thesis presents the structured singular value (SSV) method as an effective, reliable and robust stability analysis approach that justifiably incorporates uncertainties which are inherently present in physical systems. Although the SSV approach has numerous benefits, it has a few drawbacks that tend to make it hard to apply. Its theoretical framework remains complex. The practical approaches to applying the SSV method to PE systems seem lacking in the literature. The SSV approach is generally applied to linear system models while most systems are non-linear in nature. This thesis demonstrates the applicability of the SSV method to PE systems, by addressing these limitations. The work first brings deeper and clearer insights into key concepts of SSV theory. It demonstrates the significance and usefulness of the robust stability measure (SSV) in the space of multiple parametric uncertainties, through the concept of the hypercube. Secondly, it presents several practical approaches to applying the SSV method to PE systems. Finally, it develops a modelling methodology that converts a non-linear system to an equivalent linear model, suited for SSV analysis. The findings are supported by simulation and experimental results of the buck converter, permanent magnet machine drive, ideal constant power load and resistance-inductance-capacitance systems. This thesis provides the design engineer with some crucial theoretical and practical tools for applying the SSV approach to both linear and non-linear models of PE systems, while showing how to reap the full benefits of the method. It is the author's belief that the SSV method can be used as widely as classical methods, and to great effect.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TK Electrical engineering. Electronics Nuclear engineering