Use this URL to cite or link to this record in EThOS:
Title: Laser cooling of YbF molecules for an improved measurement of the electron electric dipole moment
Author: Almond, James Robert
ISNI:       0000 0004 6347 203X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Cold molecules are attractive for a wide range of scientific applications, including quantum computation, the study of chemical reactions, and tests of fundamental physics. Laser cooling has proved to be an invaluable technique in the cooling of atoms. This technique was once thought to be infeasible for molecules, because it is difficult to find a closed cycling transition due to their vibrational structure. Recently, laser cooling of several diatomic species has been demonstrated. These molecules possess electronic transitions with highly diagonal Franck-Condon matrices, which make it possible to drive a quasi-closed cycling transition. Ytterbium fluoride (YbF) molecules are amenable to laser cooling and are especially interesting because they are used to measure the electron's electric dipole moment (eEDM). Measurements of the eEDM test the prediction of theories that extend the Standard Model of particle physics. The sensitivity of an eEDM experiment could be greatly increased by using ultracold molecules produced by direct laser cooling. This thesis presents work done towards producing a laser-cooled beam of YbF for an eEDM experiment. This work includes the construction of the cooling experiment, a novel method for efficiently combining laser beams of very similar frequencies, results of spectroscopic measurements to find the required transitions for laser cooling, the results of initial optical cycling experiments, and the first laser cooling results of YbF. Using a one-dimensional optical molasses, a beam of molecules is Doppler cooled in one transverse direction to a temperature of approximately 70 mK. Preliminary evidence of cooling to lower temperatures through a Sisyphus mechanism is also presented. Finally, paths towards improving the laser cooling are suggested. The work opens the door to improved measurements of the eEDM using ultracold YbF molecules.
Supervisor: Hinds, Edward ; Tarbutt, Michael Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral