Use this URL to cite or link to this record in EThOS:
Title: Quantification of uncertainty in probabilistic safety analysis
Author: El-Shanawany, Ashraf Ben Mamdouh
ISNI:       0000 0004 6347 1811
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis develops methods for quantification and interpretation of uncertainty in probabilistic safety analysis, focussing on fault trees. The output of a fault tree analysis is, usually, the probability of occurrence of an undesirable event (top event) calculated using the failure probabilities of identified basic events. The standard method for evaluating the uncertainty distribution is by Monte Carlo simulation, but this is a computationally intensive approach to uncertainty estimation and does not, readily, reveal the dominant reasons for the uncertainty. A closed form approximation for the fault tree top event uncertainty distribution, for models using only lognormal distributions for model inputs, is developed in this thesis. Its output is compared with the output from two sampling based approximation methods; standard Monte Carlo analysis, and Wilks’ method, which is based on order statistics using small sample sizes. Wilks’ method can be used to provide an upper bound for the percentiles of top event distribution, and is computationally cheap. The combination of the lognormal approximation and Wilks’ Method can be used to give, respectively, the overall shape and high confidence on particular percentiles of interest. This is an attractive, practical option for evaluation of uncertainty in fault trees and, more generally, uncertainty in certain multilinear models. A new practical method of ranking uncertainty contributors in lognormal models is developed which can be evaluated in closed form, based on cutset uncertainty. The method is demonstrated via examples, including a simple fault tree model and a model which is the size of a commercial PSA model for a nuclear power plant. Finally, quantification of “hidden uncertainties” is considered; hidden uncertainties are those which are not typically considered in PSA models, but may contribute considerable uncertainty to the overall results if included. A specific example of the inclusion of a missing uncertainty is explained in detail, and the effects on PSA quantification are considered. It is demonstrated that the effect on the PSA results can be significant, potentially permuting the order of the most important cutsets, which is of practical concern for the interpretation of PSA models. Finally, suggestions are made for the identification and inclusion of further hidden uncertainties.
Supervisor: Walker, Simon Sponsor: Not available
Qualification Name: Thesis (D.Eng.) Qualification Level: Doctoral