Use this URL to cite or link to this record in EThOS:
Title: Investigations into electrochemical water splitting
Author: Roger Barba, Isolda
ISNI:       0000 0004 6353 2688
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
The work detailed in this thesis is organized in the following manner: In Chapter 1 we discuss electrochemical and photoelectrochemical catalysts in the context of their application for solar-to-hydrogen devices. During this introduction we will give an overview of the current state of the field, discussing the different kinds of materials that are being investigated before giving a brief description of some actual solar-to-hydrogen devices and finishing with a discussion of the current and future challenges in the field. Chapter 2 is a description of the different techniques used throughout this thesis. Once having set the bases, we shall start with the actual research, which corresponds to Chapters 3 to 5. Chapter 3 and 4 deal with the effect of trace metal impurities in electrochemical water splitting. In Chapter 3 we show that adventitious nickel at trace levels can act as a water oxidation catalyst in mildly basic aqueous solutions at overpotentials comparable to many recently-reported water oxidation catalysts, therefore serving to raise the burden of proof required of new materials in this field. Chapter 4 shows how silver ions leaking from Ag/AgCl reference electrodes in aqueous buffers at low pH can deposit on the working electrode as Ag(0) and catalyze the hydrogen evolution reaction, calling into question the validity of any reports using these electrodes that cannot demonstrate significantly superior activity to the baseline we set in this chapter. In Chapter 5 we describe a direct hydrothermal deposition method to prepare Cobalt-doped MoS2 thin films onto transparent Fluorine-doped SnO2 substrate and demonstrate that the obtained films display good activity for the hydrogen evolution reaction from acid solution.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QD Chemistry