Use this URL to cite or link to this record in EThOS:
Title: Graph algorithms and complexity aspects on special graph classes
Author: Stewart, Anthony Graham
ISNI:       0000 0004 6350 5532
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Graphs are a very flexible tool within mathematics, as such, numerous problems can be solved by formulating them as an instance of a graph. As a result, however, some of the structures found in real world problems may be lost in a more general graph. An example of this is the 4-Colouring problem which, as a graph problem, is NP-complete. However, when a map is converted into a graph, we observe that this graph has structural properties, namely being (K_5, K_{3,3})-minor-free which can be exploited and as such there exist algorithms which can find 4-colourings of maps in polynomial time. This thesis looks at problems which are NP-complete in general and determines the complexity of the problem when various restrictions are placed on the input, both for the purpose of finding tractable solutions for inputs which have certain structures, and to increase our understanding of the point at which a problem becomes NP-complete. This thesis looks at four problems over four chapters, the first being Parallel Knock-Out. This chapter will show that Parallel Knock-Out can be solved in O(n+m) time on P_4-free graphs, also known as cographs, however, remains hard on split graphs, a subclass of P_5-free graphs. From this a dichotomy is shown on $P_k$-free graphs for any fixed integer $k$. The second chapter looks at Minimal Disconnected Cut. Along with some smaller results, the main result in this chapter is another dichotomy theorem which states that Minimal Disconnected Cut is polynomial time solvable for 3-connected planar graphs but NP-hard for 2-connected planar graphs. The third chapter looks at Square Root. Whilst a number of results were found, the work in this thesis focuses on the Square Root problem when restricted to some classes of graphs with low clique number. The final chapter looks at Surjective H-Colouring. This chapter shows that Surjective H-Colouring is NP-complete, for any fixed, non-loop connected graph H with two reflexive vertices and for any fixed graph H’ which can be obtained from H by replacing vertices with true twins. This result enabled us to determine the complexity of Surjective H-Colouring on all fixed graphs H of size at most 4.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available