Use this URL to cite or link to this record in EThOS:
Title: Preparation, characterisation and secondary crystallisation of PHB based copolymers and carbohydrate blends
Author: Fitzgerald, Annabel Victoria Lucy
ISNI:       0000 0004 6347 2523
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Poly(hydroxybutyrate) copolymers are sustainable and biodegradable, but they are known to exhibit secondary crystallisation, which severely reduces the ductility of these materials, thus hindering their current commercial use. Therefore, the main focus of this research was to explore a number of strategies to control the secondary crystallisation behaviour of two Poly(hydroxybutyrate) based copolymers. Blends of P(HB-co-HV)(3 wt % HV) with carbohydrate molecules of varying chain lengths were prepared by melt blending, characterised, and monitored over time to assess their capability to reduce secondary crystallisation. Additives were found to hinder the secondary crystallisation process, demonstrated by a reduction in the percentage change of mechanical properties as the concentration and chain length increased. The effect of storage temperature on the secondary crystallisation behaviour of P(HB-co-HHx)(33 % HHx) was also reported. Samples were stored at a range of storage temperatures and the effects on thermal, chemical and mechanical properties discussed. Increasing storage temperature caused the secondary process to occur to a greater extent, with greater increases in the melting temperature recorded in samples stored at 100 \(^∘\)C (128 \(^∘\)C - 135 \(^∘\)C) compared to samples stored at 7 \(^∘\)C (128 \(^∘\)C – 128 \(^∘\)C). Sub-melting point degradation of the material was also noted.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TN Mining engineering. Metallurgy