Use this URL to cite or link to this record in EThOS:
Title: Strongly-correlated phases in trapped-ion quantum simulators
Author: Nevado Serrano, Pedro
ISNI:       0000 0004 6350 3991
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
We study quantum (T = 0) phases of strongly-correlated matter, and their possible implementation in a quantum simulator. We focus on the non-perturbative regimes of 1D spin-boson models. As a reference physical system we consider trapped-ion chains. We realize complex many-body states, such as a ground state exhibiting magnetic frustration, a lattice gauge theory, and a topological insulator. The exquisite control over these phases offered by a quantum simulator opens up exciting possibilities for exploring the exotic phenomena emerging in these systems, such as enhanced fluctuations and correlations. We address the non-perturbative regimes of the phase diagrams by means of mean-field theories and the numerical algorithm DMRG. We have established the universality class of the continuous transition in the spin-boson chain, the existence of a first order phase transition when the system is endowed with a gauge symmetry, and the possibility of probing topological states of matter in these systems. Our results show that some of the most exotic phases of quantum matter can be readily realized in trapped-ion quantum simulators. This offers the possibility of exploring these physical models beyond their original realm of applicability, which may provide us with new insights on both theoretical and applied fields of physics, ranging from high-energy processes to low-energy cooperative phenomena.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC0170 Atomic physics. Constitution and properties of matter Including molecular physics ; relativity ; quantum theory ; and solid state physics