Use this URL to cite or link to this record in EThOS:
Title: The impact of shale pressure diffusion on 4D seismic interpretation
Author: Rangel Gonzalez, Ricardo Elias
ISNI:       0000 0004 6347 6735
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Shale typically has a low but non-negligible permeability of the order of nanodarcys (recognized an appreciated in production of unconventional resources), which could affect the magnitude and pattern of the pressure in conventional reservoirs over the lifetime of a producing field. The implications of this phenomenon for reservoir monitoring by 4D seismic can be significant, but depend on the geology of the field, the time-lines for production and recovery, and the timing of the seismic surveys. In this PhD thesis I developed an integrated workflow to assess the process of shale pressure diffusion and its elastic implications in the 4D seismic interpretation of four conventional reservoirs (three North Sea case studies and one from West Africa), with different geological settings (shallow marine and turbidites) and production mechanisms. To accomplish that, first, a detailed petrophysical evaluation was performed to characterize the overburden, intra-reservoir and underburden shales. Next, the simulation models were adjusted to activate the shale-related contributions, and then, applying simulator to seismic workflows, 3D and 4D synthetic seismic modelling were performed, for comparison with the observed seismic data and to establish the impact of the shale pressure diffusion in the elastic dynamic behaviour of the reservoir. This work also includes a case study where evaluation of shale pressure diffusion was integrated with geomechanical simulations to assess the propagation of time shifts and time strain in the overburden of a high pressure/high temperature reservoir under compaction, improving the understanding of the distribution and polarity of the observed seismic time strain. Fluid flow simulation results of this work indicate that activation of the shale improves the overall reservoir connectivity, enhancing model prediction (production history matched data). The fit to observed 4D seismic data was improved in all the field applications with a noticeable reduction (up to 6%) in the mismatch (hardening and softening signal distribution) for the models with active shales. In reservoirs where the saturation was very sensitive to changes in pressure, shale activation proved to impact strongly on the breakout and distribution of gas liberated from solution. Overall, this work found that inclusion of shale in the 3D and 4D reservoir seismic modelling can provide valuable insights for the interpretation of the reservoir’s dynamic behaviour and that, under particular conditions such as strong reservoir compartmentalization, shale pressure diffusion could be a significant process in the interpretation of the 4D seismic signature.
Supervisor: MacBeth, Colin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available