Use this URL to cite or link to this record in EThOS:
Title: Completeness and the ZX-calculus
Author: Backens, Miriam K.
ISNI:       0000 0004 6061 8603
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Graphical languages offer intuitive and rigorous formalisms for quantum physics. They can be used to simplify expressions, derive equalities, and do computations. Yet in order to replace conventional formalisms, rigour alone is not sufficient: the new formalisms also need to have equivalent deductive power. This requirement is captured by the property of completeness, which means that any equality that can be derived using some standard formalism can also be derived graphically. In this thesis, I consider the ZX-calculus, a graphical language for pure state qubit quantum mechanics. I show that it is complete for pure state stabilizer quantum mechanics, so any problem within this fragment of quantum theory can be fully analysed using graphical methods. This includes questions of central importance in areas such as error-correcting codes or measurement-based quantum computation. Furthermore, I show that the ZX-calculus is complete for the single-qubit Clifford+T group, which is approximately universal: any single-qubit unitary can be approximated to arbitrary accuracy using only Clifford gates and the T-gate. In experimental realisations of quantum computers, operations have to be approximated using some such finite gate set. Therefore this result implies that a wide range of realistic scenarios in quantum computation can be analysed graphically without loss of deductive power. Lastly, I extend the use of rigorous graphical languages outside quantum theory to Spekkens' toy theory, a local hidden variable model that nevertheless exhibits some features commonly associated with quantum mechanics. The toy theory for the simplest possible underlying system closely resembles stabilizer quantum mechanics, which is non-local; it thus offers insights into the similarities and differences between classical and quantum theories. I develop a graphical calculus similar to the ZX-calculus that fully describes Spekkens' toy theory, and show that it is complete. Hence, stabilizer quantum mechanics and Spekkens' toy theory can be fully analysed and compared using graphical formalisms. Intuitive graphical languages can replace conventional formalisms for the analysis of many questions in quantum computation and foundations without loss of mathematical rigour or deductive power.
Supervisor: Abramsky, Samson ; Coecke, Bob Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Quantum theory ; Computer science ; quantum computing ; stabilizer quantum mechanics ; graphical calculus ; categorical quantum mechanics