Use this URL to cite or link to this record in EThOS:
Title: Targeting ATM/ATR signalling in lung cancer
Author: Weber, Anika Maria
ISNI:       0000 0004 6061 5269
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Cells respond to the induction of DNA damage with activation of the DNA damage response (DDR), a complex signalling network which orchestrates cell cycle arrest and DNA repair in order to maintain genomic stability and cell viability. Activation of these signalling pathways enables cancer cells to survive DNA damaging chemo- or radiotherapy and contributes to the development of therapy resistance. Therefore, components of the DDR have become attractive targets for chemo- or radiosensitisation. Furthermore, cancer cells frequently exhibit defects in certain DDR components and may, as a consequence, become highly dependent on remaining DDR pathways to survive DNA damage. Two apical mediators of the DDR are the serine/threonine protein kinases ATM and ATR. ATM is frequently mutated in non-small cell lung cancer (NSCLC), and defects in ATM may render the tumour cells dependent on ATR signalling for survival. In this study, we characterised the functional consequences of ATM mutations in NSCLC cell lines and established an immunohistochemistry-based assay to identify patients with loss of ATM expression. As a single agent, pharmacological ATR inhibition (ATRi) was selectively cytotoxic for cells deficient in both ATM and p53. Furthermore, ATRi in combination with either ATM or PARP inhibition selectively killed tumour cells with mutant p53. We show that following ATR inhibition, ATM and p53 perform critical cell cycle checkpoint functions, independently of each other. Our results suggest that while retained function in any of these pathways is sufficient to maintain cell viability, functional loss of ATM, ATR and p53 results in premature mitotic entry, chromosome fragmentation and mitotic catastrophe. We conclude that in NSCLC the functional status of both ATM and p53 determines the cellular response to ATR inhibition, and propose that a combination of ATR inhibition with ATM or PARP inhibition may have broad utility for the treatment of p53-mutated NSCLC.
Supervisor: Ryan, Anderson Sponsor: Cancer Research UK ; Medical Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Lungs--Cancer ; DNA damage ; Ataxia telangiectasia