Use this URL to cite or link to this record in EThOS:
Title: High-fidelity quantum logic in Ca+
Author: Ballance, Christopher J.
ISNI:       0000 0004 6060 4156
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Trapped atomic ions are one of the most promising systems for building a quantum computer -- all of the fundamental operations needed to build a quantum computer have been demonstrated in such systems. The challenge now is to understand and reduce the operation errors to below the 'fault-tolerant threshold' (the level below which quantum error correction works), and to scale up the current few-qubit experiments to many qubits. This thesis describes experimental work concentrated primarily on the first of these challenges. We demonstrate high-fidelity single-qubit and two-qubit (entangling) gates with errors at or below the fault-tolerant threshold. We also implement an entangling gate between two different species of ions, a tool which may be useful for certain scalable architectures. We study the speed/fidelity trade-off for a two-qubit phase gate implemented in 43Ca+ hyperfine trapped-ion qubits. We develop an error model which describes the fundamental and technical imperfections / limitations that contribute to the measured gate error. We characterize and minimise various error sources contributing to the measured fidelity, allowing us to account for errors due to the single-qubit operations and state readout (each at the 0.1% level), and to identify the leading sources of error in the two-qubit entangling operation. We achieve gate fidelities ranging between 97.1(2)% (for a gate time tg = 3.8 μs) and 99.9(1)% (for tg = 100 μs), representing respectively the fastest and lowest-error two-qubit gates reported between trapped-ion qubits by nearly an order of magnitude in each case. We also characterise single-qubit gates with average errors below 10-4 per operation, over an order of magnitude better than previously achieved with laser-driven operations. Additionally, we present work on a mixed-species entangling gate. We entangle of a single 40Ca+ ion and a single 43Ca+ ion with a fidelity of 99.8(5)%, and perform full tomography of the resulting entangled state. We describe how this mixed-species gate mechanism could be used to entangle 43Ca+ and 88Sr+, a promising combination of ions for future experiments.
Supervisor: Lucas, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Trapped ions ; Quantum logic ; Quantum computers ; Fault-tolerant computing