Use this URL to cite or link to this record in EThOS:
Title: A four-body model for the breakup of Borromean nucleus 22C
Author: Miyamoto, Tomokazu
ISNI:       0000 0004 6061 5736
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
A Borromean system is a bound 3-body system where no 2-body subsystems are bound. In nuclear physics, a nucleus that can be modelled as a Borromean system is called a Borromean nucleus; 6 He and 11 Li are good examples of this. Recent research suggests that this Borromean nature should also be exhibited by 22 C, the heaviest-known carbon isotope. In this PhD thesis, a schematic approach is taken to study reactions involving Borromean nuclei. Hyperspherical formalism (HH) and coordinate space Faddeev (CSF) method are used for creating their 3-body bound state wave functions. We formulate the reactions of a Borromean nucleus with a stable target at incident energies ranging from tens of (MeV) to a few hundred (MeV); we adopt a 4-body reaction model to deepen our understanding of the reaction mechanism involving Borromean nuclei. The Glauber-WKB framework is used to describe these reactions, which is well-suited for these incident energies. Introducing Watson-Migdal final state interaction, we calculate the E1 strengths for Borromean nuclei so as to elucidate their breakup mechanism and we explore the possibility of the existence of a soft dipole mode. We also calculate the differential breakup cross sections to see how the post-collision interaction can have an impact on the cross sections. As far as 22 C is concerned, it is found that the reactions are mainly focused on the forward angle region, and the contributions from the higher order terms are not significant. This implies that the non-eikonal trajectories do not play a crucial role in the reaction mechanism. Also, both E1 distributions and breakup cross sections seem to sensitive to the 2n-separation energies of the bound state wave functions, but the E1 distributions and the cross sections to 1− continuum state seem not to be sensitive to the FSIs; cross sections to 0+ and 2+ continuum states seem to be sensitive to the FSIs. Our findings does not support the view that, if an soft dipole mode exists, it is induced by the FSIs.
Supervisor: Al-Khalili, J. S. ; Barbieri, C. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available