Use this URL to cite or link to this record in EThOS:
Title: Metadiscourse tagging in academic lectures
Author: Alharbi, Ghada
ISNI:       0000 0004 6062 5205
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2119
Access from Institution:
This thesis presents a study into the nature and structure of academic lectures, with a special focus on metadiscourse phenomena. Metadiscourse refers to a set of linguistics expressions that signal specific discourse functions such as the Introduction: “Today we will talk about ... ” and Emphasising: “This is an important point”. These functions are important because they are part of lecturers’ strategies in understanding of what happens in a lecture. The knowledge of their presence and identity could serve as initial steps toward downstream applications that will require functional analysis of lecture content such as a browser for lectures archives, summarisation, or an automatic minute-taker for lectures. One challenging aspect for metadiscourse detection and classification is that the set of expressions are semi-fixed, meaning that different phrases can indicate the same function. To that end a four-stage approach is developed to study metadiscourse in academic lectures. Firstly, a corpus of metadiscourse for academic lectures from Physics and Economics courses is built by adapting an existing scheme that describes functional-oriented metadiscourse categories. Second, because producing reference transcripts is a time-consuming task and prone to some errors due to the manual efforts required, an automatic speech recognition (ASR) system is built specifically to produce transcripts of lectures. Since the reference transcripts lack time-stamp information, an alignment system is applied to the reference to be able to evaluate the ASR system. Then, a model is developed using Support Vector Machines (SVMs) to classify metadiscourse tags using both textual and acoustical features. The results show that n-grams are the most inductive features for the task; however, due to data sparsity the model does not generalise for unseen n-grams. This limits its ability to solve the variation issue in metadiscourse expressions. Continuous Bag-of-Words (CBOW) provide a promising solution as this can capture both the syntactic and semantic similarities between words and thus is able to solve the generalisation issue. However, CBOW ignores the word order completely, something which is very important to be retained when classifying metadiscourse tags. The final stage aims to address the issue of sequence modelling by developing a joint CBOW and Convolutional Neural Network (CNN) model. CNNs can work with continuous features such as word embedding in an elegant and robust fashion by producing a fixed-size feature vector that is able to identify indicative local information for the tagging task. The results show that metadiscourse tagging using CNNs outperforms the SVMs model significantly even on ASR outputs, owing to its ability to predict a sequence of words that is more representative for the task regardless of its position in the sentence. In addition, the inclusion of other features such as part-of-speech (POS) tags and prosodic cues improved the results further. These findings are consistent in both disciplines. The final contribution in this thesis is to investigate the suitability of using metadiscourse tags as discourse features in the lecture structure segmentation model, despite the fact that the task is approached as a classification model and most of the state-of-art models are unsupervised. In general, the obtained results show remarkable improvements over the state-of-the-art models in both disciplines.
Supervisor: Hain, Thomas Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available