Use this URL to cite or link to this record in EThOS:
Title: The use of metal and metal oxide nanoparticles against biofilms
Author: Tejpal, Jyoti
ISNI:       0000 0004 6059 6942
Awarding Body: De Montfort University
Current Institution: De Montfort University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
The persistence of biofilms in hospital settings are associated with Healthcare Associated Infections (HCAI), causing increased morbidity, mortality and healthcare costs. The resistance of biofilms against commonly used hospital disinfectants has been well reported. Metal and metal oxide nanoparticles (NP) such as silver (Ag), copper (Cu), zinc oxide (ZnO) and copper oxide (CuO) exhibit antimicrobial properties against various pathogens. Methods: Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in a Centre for Disease Control (CDC) biofilm reactor and a 96 well plate was compared. A three stage approach including Minimum Biofilm Reduction Concentration (MBRC), R2 values and log(10) reductions was used to assess the efficacy of Ag and ZnO NPs both alone and in combination against P. aeruginosa and S. aureus biofilms. Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) was used to further assess the antimicrobial ability of the metal and metal oxide NPs. The prevention of P. aeruginosa and S. aureus adherence on Ag and ZnO thin film coating on silicon (Si) surfaces was also investigated, as well as icaC, ebpS and fnbB gene expression in S. aureus biofilms. Results: The CDC biofilm reactor demonstrated to be the most effective method for P. aeruginosa and S. aureus biofilm production in comparison to 96 well plates, with lower standard errors of the mean (SE) and higher replicability. Individual MBRC of ZnO and Ag NPs in suspension were 256 and 50 µg/ml for P. aeruginosa and 16 and 50 µg/ml for S. aureus respectively. The concentrations in combination were reduced by at least a half, with concentrations of 32/25 µg/ml of ZnO/Ag NPs in suspension resulting in a significant (p ≤0.05) reduction of 3.77 log(10) against P. aeruginosa biofilms and 8/12 µg/ml of ZnO/Ag NPs in suspension resulted in a 3.91 log(10) (p ≤0.05) against S. aureus biofilms. Both combinations showed an additive effect. Time point analysis confirmed that a 24 hour treatment is vital for any significant (p ≤0.05) antimicrobial activity. AAS data suggested that the Ag+ ions quenched Zn2+ ions, therefore the antimicrobial efficacy of the combination is mainly due to Ag+ ions. Damage of the biofilms from Ag and ZnO NPs was observed in the SEM imaging and energy dispersive X-ray (EDX) analysis confirmed the adherence of Zn and Ag within the biofilms. CLSM imaging showed dead (red) cells of P. aeruginosa and S. aureus biofilms throughout the depth of the biofilm. P. aeruginosa formation was reduced by 1.41 log(10) and 1.43 log(10) on Ag and ZnO thin film coatings respectively. For S. aureus, a reduction of 1.82 log(10) and 1.65 log(10) was obtained for Ag and ZnO coating respectively. Only low levels of ribonucleic acid (RNA) were achieved so no further gene analysis could occur. Conclusion: Reductions of ≥3 log(10) were observed for P. aeruginosa and S. aureus biofilm treatment with ZnO/Ag NP suspensions. It can be concluded that the ZnO/Ag NP suspensions had greater antimicrobial activity than Ag and ZnO coated surfaces owing to large concentrations of Ag+ and Zn2+ ions acting upon the biofilms. The slower release of ions from coated surfaces suggest an inadequate concentration of ions in the media, which are therefore unable to prevent biofilm formation as rapidly as NP suspensions, however provide a sustained release of ions over time. The results from this investigation propose that Ag and ZnO NPs in suspension could be a potential alternative to disinfectants for use in nosocomial environments against P. aeruginosa and S. aureus biofilms.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: biofilm ; metal ; metal oxide ; pseudomonas aeruginosa ; staphylococcus aureus ; hospital ; infection ; nanoparticles ; antimicrobial ; silver ; copper oxide ; zinc oxide ; CDC biofilm reactor ; 96 well plate ; crystal violet