Use this URL to cite or link to this record in EThOS:
Title: Effect of surface treatment and recycling on the mechanical properties of e-glass
Author: Ojo, Samuel Olukunle
ISNI:       0000 0004 5994 8349
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
The primary focus of this study was to investigate the effect of removing the binder, by specified method, on the tensile strength of E-glass fibre bundle and composites. The methods investigated for removing the binder from E-glass fibres were: (i) fibre spreading; (ii) acetone-based treatment; and (iii) heat treatment in air and in a vacuum. In the first phase of the research, the effect of the above mentioned binder removal methods were investigated using the single-bundle tensile test. Binder removal via fibre spreading did not cause any reduction in the properties of E-glass fibre bundles. However, binder removal by acetone extraction led to a decrease of 37% in the tensile strength. The most detrimental effect on the tensile strength was found to be when E-glass was exposed to temperatures in excess of 450 °C. The percentage reduction in tensile strength for E-glass fibre bundle for 450 °C, 550 °C and 650 °C were 60%, 66% and 90% respectively. In the second phase of the research, E-glass bundles that were subjected to the above-mentioned treatments were used to fabricate single bundle composites. The procedure for manufacturing these composites was developed. It was established that the reduction in the strengths of the E-glass composites after specified treatment could be correlated to the reduction in properties experience by the fibre bundles. Attempts were made to analyse the treated fibres using a range of analytical techniques such as X-ray diffraction, thermographic analysis, differential scanning calorimetry and infrared spectroscopy analysis. Heat treating E-glass fibres in the absence of air was shown to bring about a reduction in the tensile strength by 58% as compared to 78% when the fibres were previously heated in air at 650 °C.
Supervisor: Not available Sponsor: School of Metallurgy and Materials ; University of Birmingham ; Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TJ Mechanical engineering and machinery ; TN Mining engineering. Metallurgy