Use this URL to cite or link to this record in EThOS: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.699105 |
![]() |
|||||||
Title: | Experimental investigation of a premixed compression ignition engine | ||||||
Author: | Zeraati Rezaei, Soheil |
ISNI:
0000 0004 5994 6159
|
|||||
Awarding Body: | University of Birmingham | ||||||
Current Institution: | University of Birmingham | ||||||
Date of Award: | 2016 | ||||||
Availability of Full Text: |
|
||||||
Abstract: | |||||||
Premixed compression-ignition (PCI) combustion techniques using low-cetane fuels, including Dieseline (mixture of diesel-gasoline) and naphtha, were investigated in a light-duty multi-cylinder CI-engine focusing mainly on reducing emissions while maintaining or improving the brake-thermal-efficiency. Different fuel-injection and intake/exhaust handling strategies were investigated in a wide engine operating load range from 1.4 to 17.3 bar BMEP. Moreover, an out-cylinder emission reduction technique through using a diesel-oxidation-catalyst (DOC) was investigated. Hot (uncooled) exhaust-gas-recirculation (EGR) combined with low fuel-injection-pressure (as low as 150 bar) significantly enhanced combustion-performance (COV < 5%) and reduced carbon-monoxide and hydrocarbon emissions at lower loads, when using low-cetane fuelled PCI techniques. At 1.4 to 6 bar BMEP, particulate emissions were reduced by >99% with respect to the diesel-CI baseline, in terms of number and mass, while maintaining brake-specific-NOx below 0.4 g/kWh. At loads more than 6 bar BMEP, double-injection strategy advanced combustion-phasing, where the first injection-event was shown to be significantly influential. Due to narrower boiling-range of naphtha compared to Dieseline, naphtha PCI resulted in high-COV at low loads, while it resulted in rapid-combustion at medium/high loads. Utilisation of the hot-EGR is a “win-win” strategy to enhance the combustion-process of the PCI-engine and reduction of the volatile/semi-volatile compounds using the DOC.
|
|||||||
Supervisor: | Not available | Sponsor: | University of Birmingham ; European Research Council | ||||
Qualification Name: | Thesis (Ph.D.) | Qualification Level: | Doctoral | ||||
EThOS ID: | uk.bl.ethos.699105 | DOI: | Not available | ||||
Keywords: | TJ Mechanical engineering and machinery ; TL Motor vehicles. Aeronautics. Astronautics | ||||||
Share: |