Use this URL to cite or link to this record in EThOS:
Title: Influence of asymmetric valve timing strategy on in-cylinder flow of the internal combustion engine
Author: Butcher, Daniel S. A.
ISNI:       0000 0004 5993 7500
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Variable Valve Timing (VVT) presents a powerful tool in the relentless pursuit of efficiency improvements in the internal combustion engine. As the valves have such ultimate control over the gas exchange processes, extensive research effort in this area has shown how valve event timing can be manipulated to reduce engine pumping losses, fuel consumption and engine out emissions. Pumping losses may be significantly reduced by use of throttleless strategies, making use of intake valve duration for load control, while alternative cycles such as the Miller cycle allow modification of the effective compression ratio. More recently, the value of single valve operation in part load conditions is exploited, bringing with it the concept of asymmetric valve lifts. Work in this area found the side effect of asymmetric valve operation is a significant change in the behaviour of the in-cylinder flow structures, velocities and turbulence intensity. Work presented in this thesis exploits asymmetric valve strategies to modify the in-cylinder flow conditions. The Proper Orthogonal Decomposition (POD) is a method employed in the fluids dynamics field to facilitate the separation of coherent motion structures from the turbulence. In the presented work, the application of POD to in-cylinder flow analysis is further developed by the introduction of a novel method for identifying the POD modes representative of coherent motion and those representative of the turbulence. A POD mode correlation based technique is introduced and developed, with the resulting fields showing evidence of coherence and turbulence respectively. Experimental tests are carried out using a full length optically accessible, single cylinder research engine equipped with a fully variable valve train (FVVT) to allow full control of both valve timing and lift. In-cylinder flow is measured through the use of Particle Image Velocimetry (PIV) at several crank angle timings during the intake stroke whilst the engine is operated under a range of asymmetric valve strategies. The exhaust valves and one intake valve have their respective schedules fixed, while the second intake valve schedule is adjusted to 80\%, 60\%, 40\%, 20\%, 0\% lift. The resulting PIV fields are separated into coherent motion and turbulence using the developed technique, allowing for analysis of each constituent independently. The coherent element gives insight to large scale flows, often of the order of magnitude of the cylinder. These structures not only give a clear indication of the overall motion and allow assessment of flow characteristics such as swirl and tumble ratio, but the variation in the spatial location of these structures provides additional insight to the cyclic to cycle variation (CCV) of the flow, which would not otherwise be possible due to the inclusion of the turbulent data. Similarly, with the cyclic variation removed from the turbulent velocity field, a true account of the fluctuating velocity, u' and derived values such as the Turbulent Kinetic Energy (TKE) may be gained. Results show how manipulation of a one intake valve timing can influence both the large scale motions and the turbulence intensity. By the reduction of lift, the swirl ratio is increased almost linearly as the typical counter-rotating vortex pair becomes asymmetric, before a single vortex structure is observed in the lowest lift cases. A switching mechanism between the two is identified and found to be responsible for increased levels of CCV. With the reduction in lift, TKE is observed not only to increase, but change the spatial distribution of turbulence. Of course, the reduction in valve lift comes with the penalty of a reduced valve curtain area. However, it was identified both in literature and throughout this study that the reduction in lift did not negatively influence the engine breathing as the same trapped mass was achieved under all cases with no adjustment of manifold pressure. While literature shows both bulk motion and turbulence are key in liquid fuel break-up during the intake stroke, the mixing effects under port-injected natural gas were investigated experimentally using Laser Induced Fluorescence (LIF). The valve strategy was found to have no significant effect on the mixture distribution at the time of spark.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Asymmetric valve strategy ; Internal combustion engine ; Cycle-to-cycle variation ; Turbulence ; Integral length scale ; Particle image velocimetry ; Proper orthogonal decomposition ; Natural gas ; Variable valve timing