Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.695145
Title: Synthetic biology in droplet-based microfluidics
Author: Mohammadi, Kimia
ISNI:       0000 0004 5994 636X
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 22 Aug 2024
Access from Institution:
Abstract:
Droplet microfluidics is an active multidisciplinary area of research that evolved out of the larger field of microfluidics. It enables the user to handle, process and manipulate micrometer-sized emulsion droplets on a micro- fabricated platform. The capability to carry out a large number of individual experiments per unit time makes the droplet microfluidic technology an ideal high-throughput platform for analysis of biological and biochemical samples. The objective of this thesis was to use such a technology for designing systems with novel implications in the newly emerging field of synthetic biology. Chapter 4, the first results chapter, introduces a novel method of droplet coalescence using a flow-focusing capillary device. In Chapter 5, the development of a microfluidic platform for the fabrication of a cell-free micro-environment for site-specific gene manipulation and protein expression is described. Furthermore, a novel fluorescent reporter system which functions both in vivo and in vitro is introduced in this chapter. Chapter 6 covers the microfluidic fabrication of polymeric vesicles from poly(2-methyloxazoline-b-dimethylsiloxane-b-2-methyloxazoline) tri-block copolymer. The polymersome made from this polymer was used in the next Chapter for the study of a chimeric membrane protein called mRFP1-EstA∗. In Chapter 7, the application of microfluidics for the fabrication of synthetic biological membranes to recreate artificial cell- like chassis structures for reconstitution of a membrane-anchored protein is described.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.695145  DOI:
Keywords: Q Science (General) ; QC Physics
Share: