Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694604
Title: Bosonic loop soups and their occupation fields
Author: Daniel, Owen
ISNI:       0000 0004 5992 3037
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
We consider a model for random loops on graphs which is inspired by the Feynman–Kac formula for the grand canonical partition function of an ideal gas. We associate to this model a corresponding occupation field, which is a positive random field detailing the total time spent by loops at each vertex. We argue that well known critical phenomena for the ideal gas can be reinterpreted in terms of random variables of this occupation field. We also argue that higher order correlations, such as the existence of off-diagonal long-range order, can only be seen in the occupation field by studying a modified space–time model of loops. We provide an isomorphism theorem for this model to a complex Gaussian field, and derive a version of Symanzik’s formula which describes the ideal gas interacting with a random background environment. Finally we consider the effect of interactions on the gas, and present a large deviations analysis of the cycle distribution of the loop model under two mean field Hamiltonians.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.694604  DOI: Not available
Keywords: QA Mathematics ; QC Physics
Share: