Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694453
Title: Kernel and multi-class classifiers for multi-floor WLAN localisation
Author: Abd Rahman, Mohd Amiruddin
ISNI:       0000 0004 5991 6056
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Indoor localisation techniques in multi-floor environments are emerging for location based service applications. Developing an accurate location determination and time-efficient technique is crucial for online location estimation of the multi-floor localisation system. The localisation accuracy and computational complexity of the localisation system mainly relies on the performance of the algorithms embedded with the system. Unfortunately, existing algorithms are either time-consuming or inaccurate for simultaneous determination of floor and horizontal locations in multi-floor environment. This thesis proposes an improved multi-floor localisation technique by integrating three important elements of the system; radio map fingerprint database optimisation, floor or vertical localisation, and horizontal localisation. The main focus of this work is to extend the kernel density approach and implement multi-class machine learning classifiers to improve the localisation accuracy and processing time of the each and overall elements of the proposed technique. For fingerprint database optimisation, novel access point (AP) selection algorithms which are based on variant AP selection are investigated to improve computational accuracy compared to existing AP selection algorithms such as Max-Mean and InfoGain. The variant AP selection is further improved by grouping AP based on signal distribution. In this work, two AP selection algorithms are proposed which are Max Kernel and Kernel Logistic Discriminant that implement the knowledge of kernel density estimate and logistic regression machine learning classification. For floor localisation, the strategy is based on developing the algorithm to determine the floor by utilising fingerprint clustering technique. The clustering method is based on simple signal strength clustering which sorts the signals of APs in each fingerprint according to the strongest value. Two new floor localisation algorithms namely Averaged Kernel Floor (AKF) and Kernel Logistic Floor (KLF) are studied. The former is based on modification of univariate kernel algorithm which is proposed for single-floor localisation, while the latter applies the theory kernel logistic regression which is similar to AP selection approach but for classification purpose. For horizontal localisation, different algorithm based on multi-class k-nearest neighbour ( NN) classifiers with optimisation parameter is presented. Unlike the classical kNN algorithm which is a regression type algorithm, the proposed localisation algorithms utilise machine learning classification for both linear and kernel types. The multi-class classification strategy is used to ensure quick estimation of the multi-class NN algorithms. The proposed algorithms are compared and analysed with existing algorithms to confirm reliability and robustness. Additionally, the algorithms are evaluated using six multi-floor and single-floor datasets to validate the proposed algorithms. In database optimisation, the proposed AP selection technique using Max Kernel could reduce as high as 77.8% APs compared to existing approaches while retaining similar accuracy as localisation algorithm utilising all APs in the database. In floor localisation, the proposed KLF algorithm at one time could demonstrate 93.4% correct determination of floor level based on the measured dataset. In horizontal localisation, the multi-class NN classifier algorithm could improve 19.3% of accuracy within fingerprint spacing of 2 meters compared to existing algorithms. All of the algorithms are later combined to provide device location estimation for multi-floor environment. Improvement of 43.5% of within 2 meters location accuracy and reduction of 15.2 times computational time are seen as compared to existing multi-floor localisation techniques by Gansemer and Marques. The improved accuracy is due to better performance of proposed floor and horizontal localisation algorithm while the computational time is reduced due to introduction of AP selection algorithm.
Supervisor: Zhang, Jie ; Chu, Xiaoli ; Abbas, Zulkifly ; Ismail, Alyani Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.694453  DOI: Not available
Share: