Use this URL to cite or link to this record in EThOS:
Title: Optimising energy efficiency and spectral efficiency in multi-tier heterogeneous networks : performance and tradeoffs
Author: Pervaiz, Haris Bin
ISNI:       0000 0004 5918 4713
Awarding Body: Lancaster University
Current Institution: Lancaster University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
The exponential growth in the number of cellular users along with their increasing demand of higher transmission rate and lower power consumption is a dilemma for the design of future generation networks. The spectral efficiency (SE) can be improved by better utilisation of the network resources at the cost of reduction in the energy efficiency (EE) due to the enormous increase in the network power expenditure arising from the densification of the network. One of the possible solutions is to deploy Heterogeneous Networks (HetNets) consisting of several tiers of small cell BSs overlaid within the coverage area of the macrocells. The HetNets can provide better coverage and data rate to the cell edge users in comparison to the macrocells only deployment. One of the key requirements for the next generation networks is to maintain acceptable levels of both EE and SE. In order to tackle these challenges, this thesis focuses on the analysis of the EE, SE and their tradeoff for different scenarios of HetNets. First, a joint network and user adaptive selection mechanism in two-tier HetNets is proposed to improve the SE using game theory to dynamically re-configure the network while satisfying the user's quality-of-service (QoS) requirements. In this work, the proposed scheme tries to offload the traffic from the heavily loaded small cells to the macrocell. The user can only be admitted to a network which satisfies the call admission control procedures for both the uplink and downlink transmission scheme. Second, an energy efficient resource allocation scheme is designed for a two-tier HetNets. The proposed scheme uses a low-complexity user association and power allocation algorithm to improve the uplink system EE performance in comparison to the traditional cellular systems. In addition, an opportunistic joint user association and power allocation algorithm is proposed in an uplink transmission scheme of device to device (D2D) enabled HetNets. In this scheme, each user tries to maximise its own Area Spectral Efficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. Further, a near-optimal joint user association and power allocation approach is proposed to investigate the tradeoff between the two conflicting objectives such as achievable throughput and minimising the power consumption in two-tier HetNets for the downlink transmission scheme. Finally, a multi-objective optimization problem is formulated that jointly maximizes the EE and SE in two-tier HetNets. In this context, a joint user association and power allocation algorithm is proposed to analyse the tradeoff between the achievable EE and SE in two-tier HetNets. The formulated problem is solved using convex optimisation methods to obtain the Pareto-optimal solution for the various network parameters.
Supervisor: Ni, Qiang ; Musavian, Leila Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available