Use this URL to cite or link to this record in EThOS:
Title: Taming web data : exploiting linked data for integrating medical educational content
Author: Qadan Al Fayez, Reem Ali
ISNI:       0000 0004 5923 9008
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Open data are playing a vital role in different communities, including governments, businesses, and education. This revolution has had a high impact on the education field. Recently, new practices are being adopted for publishing and connecting data on the web, known as "Linked Data", and these are used to expose and connect data which were not previously linked. In the context of education, applying Linked Data practices to the growing amount of open data used for learning is potentially highly beneficial. The work presented in this thesis tackles the challenges of data acquisition and integration from distributed web data sources into one linked dataset. The application domain of this thesis is medical education, and the focus is on bridging the gap between articles published in online educational libraries and content published on Web 2.0 platforms that can be used for education. The integration of a collection of heterogeneous resources is to create links between data collected from distributed web data sources. To address these challenges, a system is proposed that exploits the Linked Data for building a metadata schema in XML/RDF format for describing resources and enriching it with external dataset that adds semantic to its metadata. The proposed system collects resources from distributed data sources on the web and enriches their metadata with concepts from biomedical ontologies, such as SNOMED CT, that enable its linking. The final result of building this system is a linked dataset of more than 10,000 resources collected from PubMed Library, YouTube channels, and Blogging platforms. The effectiveness of the system proposed is evaluated by validating the content of the linked dataset when accessed and retrieved. Ontology-based techniques have been developed for browsing and querying the linked dataset resulting from the system proposed. Experiments have been conducted to simulate users' access to the linked dataset and validate its content. The results were promising and have shown the effectiveness of using SNOMED CT for integrating distributed resources from diverse web data sources.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software ; R Medicine (General)