Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.689727
Title: Epigenetic control of planarian stem cell potency limits stem activity and accurately defines differentiation programs
Author: Mihaylova, Yuliana
ISNI:       0000 0004 5920 1333
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Planarian flatworms are gaining popularity in regenerative medicine research due to the fact that they have unparalleled regeneration capacity. Their tissue recovery abilities are dependent on a pool of adult stem cells (neoblasts). Studies in the recent years have shown that epigenetic mechanisms have an important role in neoblasts’ self-renewal and differentiation properties. This thesis focuses on the study of trithorax-related genes and their function in neoblast regulation. Despite the fact that mammalian trithorax-related genes Mll3 and Mll4 are among the most frequently mutated genes in cancer, trithorax-related genes are the least well-studies members of the trithorax gene group (TrxG) of histone modifiers. The current study traced the evolutionary history of trithorax-related genes and concluded that they have undergone a number of independent gene fission events across phyla. In planarians, there are three partial orthologue of the mammalian Mll3 and Mll4 genes – Smed-LPT (corresponding to the N-terminus of Mll3/4), Smed-trr-1 and Smed-trr-2 (both corresponding to the C-terminus of Mll3/4). The three planarian trithorax-related genes are expressed in stem cells and control neoblast differentiation down certain lineages (brain, gut, eyes, pharynx, epidermis). Down-regulation of Smed-LPT results in hyperproliferation of stem cells, leading to tumour-like outgrowth formation. It was shown that trithorax-related genes’ function in stem cell regulation correlates with histone modification changes, specifically alterations in H3K4me1, H3K4me3 and H3K27me3. Future studies will focus on examining this correlation further via Next-Generation sequencing techniques.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.689727  DOI: Not available
Keywords: QH301 Biology (General) ; QU Biochemistry
Share: