Use this URL to cite or link to this record in EThOS:
Title: New approach to the stability and control of reaction networks
Author: Ali, Muhammad
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
A new system-theoretic approach for studying the stability and control of chemical reaction networks (CRNs) is proposed, and analyzed. This has direct application to biological applications where biochemical networks suffer from high uncertainty in the kinetic parameters and exact structure of the rate functions. The proposed approach tackles this issue by presenting "structural" results, i.e. results that extract important qualitative information from the structure alone regardless of the specific form of the kinetics which can be arbitrary monotone kinetics, including Mass-Action. The proposed method is based on introducing a class of Lyapunov functions that we call Piecewise Linear in Rates (PWLR) Lyapunov functions. Several algorithms are proposed for the construction of these functions. Subject to mild technical conditions, the existence of these functions can be used to ensure powerful dynamical and algebraic conditions such as Lyapunov stability, asymptotic stability, global asymptotic stability, persistence, uniqueness of equilibria and exponential contraction. This shows that this class of networks is well-behaved and excludes complicated behaviour such as multi-stability, limit cycles and chaos. The class of PWLR functions is then shown to be a subset of larger class of Robust Lyapunov functions (RLFs), which can be interpreted by shifting the analysis to reaction coordinates. In the new coordinates, the problem transforms into finding a common Lyapunov function for a linear parameter varying system. Consequently, dual forms of the PWLR Lyapunov functions are presented, and the interpretation in terms of the variational dynamics and contraction analysis are given. An other class of Piecewise Quadratic in Rates Lyapunov function is also introduced. Relationship with consensus dynamics are also pointed out. Control laws for the stabilization of the proposed class of networks are provided, and the concept of control Lyapunov function is briefly discussed. Finally, the proposed framework is shown to be widely applicable to biochemical networks.
Supervisor: Angeli, David Sponsor: Imperial College London
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral