Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686924
Title: Towards robust steganalysis : binary classifiers and large, heterogeneous data
Author: Lubenko, Ivans
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The security of a steganography system is defined by our ability to detect it. It is of no surprise then that steganography and steganalysis both depend heavily on the accuracy and robustness of our detectors. This is especially true when real-world data is considered, due to its heterogeneity. The difficulty of such data manifests itself in a penalty that has periodically been reported to affect the performance of detectors built on binary classifiers; this is known as cover source mismatch. It remains unclear how the performance drop that is associated with cover source mismatch is mitigated or even measured. In this thesis we aim to show a robust methodology to empirically measure its effects on the detection accuracy of steganalysis classifiers. Some basic machine-learning based methods, which take their origin in domain adaptation, are proposed to counter it. Specifically, we test two hypotheses through an empirical investigation. First, that linear classifiers are more robust than non-linear classifiers to cover source mismatch in real-world data and, second, that linear classifiers are so robust that given sufficiently large mismatched training data they can equal the performance of any classifier trained on small matched data. With the help of theory we draw several nontrivial conclusions based on our results. The penalty from cover source mismatch may, in fact, be a combination of two types of error; estimation error and adaptation error. We show that relatedness between training and test data, as well as the choice of classifier, both have an impact on adaptation error, which, as we argue, ultimately defines a detector's robustness. This provides a novel framework for reasoning about what is required to improve the robustness of steganalysis detectors. Whilst our empirical results may be viewed as the first step towards this goal, we show that our approach provides clear advantages over earlier methods. To our knowledge this is the first study of this scale and structure.
Supervisor: Ker, Andrew D. Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.686924  DOI: Not available
Keywords: Computer security ; Pattern recognition (statistics) ; Steganalysis ; Computing ; Information Hiding ; steganography ; big data ; heterogeneous data ; machine learning ; domain adaptation
Share: