Use this URL to cite or link to this record in EThOS:
Title: Data mining of vehicle telemetry data
Author: Taylor, Phillip
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Driving a safety critical task that requires a high level of attention and workload from the driver. Despite this, people often perform secondary tasks such as eating or using a mobile phone, which increase workload levels and divert cognitive and physical attention from the primary task of driving. As well as these distractions, the driver may also be overloaded for other reasons, such as dealing with an incident on the road or holding conversations in the car. One solution to this distraction problem is to limit the functionality of in-car devices while the driver is overloaded. This can take the form of withholding an incoming phone call or delaying the display of a non-urgent piece of information about the vehicle. In order to design and build these adaptions in the car, we must first have an understanding of the driver's current level of workload. Traditionally, driver workload has been monitored using physiological sensors or camera systems in the vehicle. However, physiological systems are often intrusive and camera systems can be expensive and are unreliable in poor light conditions. It is important, therefore, to use methods that are non-intrusive, inexpensive and robust, such as sensors already installed on the car and accessible via the Controller Area Network (CAN)-bus. This thesis presents a data mining methodology for this problem, as well as for others in domains with similar types of data, such as human activity monitoring. It focuses on the variable selection stage of the data mining process, where inputs are chosen for models to learn from and make inferences. Selecting inputs from vehicle telemetry data is challenging because there are many irrelevant variables with a high level of redundancy. Furthermore, data in this domain often contains biases because only relatively small amounts can be collected and processed, leading to some variables appearing more relevant to the classification task than they are really. Over the course of this thesis, a detailed variable selection framework that addresses these issues for telemetry data is developed. A novel blocked permutation method is developed and applied to mitigate biases when selecting variables from potentially biased temporal data. This approach is infeasible computationally when variable redundancies are also considered, and so a novel permutation redundancy measure with similar properties is proposed. Finally, a known redundancy structure between features in telemetry data is used to enhance the feature selection process in two ways. First the benefits of performing raw signal selection, feature extraction, and feature selection in different orders are investigated. Second, a two-stage variable selection framework is proposed and the two permutation based methods are combined. Throughout the thesis, it is shown through classification evaluations and inspection of the features that these permutation based selection methods are appropriate for use in selecting features from CAN-bus data.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software