Use this URL to cite or link to this record in EThOS:
Title: Logic-based machine learning using a bounded hypothesis space : the lattice structure, refinement operators and a genetic algorithm approach
Author: Tamaddoni Nezhad, Alireza
ISNI:       0000 0000 4283 0783
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Rich representation inherited from computational logic makes logic-based machine learning a competent method for application domains involving relational background knowledge and structured data. There is however a trade-off between the expressive power of the representation and the computational costs. Inductive Logic Programming (ILP) systems employ different kind of biases and heuristics to cope with the complexity of the search, which otherwise is intractable. Searching the hypothesis space bounded below by a bottom clause is the basis of several state-of-the-art ILP systems (e.g. Progol and Aleph). However, the structure of the search space and the properties of the refinement operators for theses systems have not been previously characterised. The contributions of this thesis can be summarised as follows: (i) characterising the properties, structure and morphisms of bounded subsumption lattice (ii) analysis of bounded refinement operators and stochastic refinement and (iii) implementation and empirical evaluation of stochastic search algorithms and in particular a Genetic Algorithm (GA) approach for bounded subsumption. In this thesis we introduce the concept of bounded subsumption and study the lattice and cover structure of bounded subsumption. We show the morphisms between the lattice of bounded subsumption, an atomic lattice and the lattice of partitions. We also show that ideal refinement operators exist for bounded subsumption and that, by contrast with general subsumption, efficient least and minimal generalisation operators can be designed for bounded subsumption. In this thesis we also show how refinement operators can be adapted for a stochastic search and give an analysis of refinement operators within the framework of stochastic refinement search. We also discuss genetic search for learning first-order clauses and describe a framework for genetic and stochastic refinement search for bounded subsumption. on. Finally, ILP algorithms and implementations which are based on this framework are described and evaluated.
Supervisor: Muggleton, Stephen H. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral