Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676208
Title: Phenotype and function of regulatory T cells in Th1- and Th2-mediated inflammatory diseases
Author: Nowakowska, Dominika Joanna
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Regulatory T cells (Treg) are critical to the maintenance of immune tolerance, partly by controlling the unwanted activation of effector T cells (Teff) and thereby enhancing the resolution of autoimmune and allergic inflammation. Recent data suggest that Treg can specialize to better control different types of inflammation by using transcriptional machinery which controls differentiation and function of Teff. This thesis addresses questions related to the efficacious use of Treg, notably their ability to adopt distinct phenotypic profiles under different inflammatory contexts and their need to recognize antigen in the inflamed organ. Two differentially mediated mouse disease models were used in this project, namely Th1/Th17-mediated experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis and Th2-mediated allergic airways inflammation (AAI) as a model of asthma. A new model of rMOG-induced AAI was developed to specifically answer the questions on the importance of cell phenotype versus antigen-reactivity for the effective Treg-mediated suppression. It was demonstrated that Treg from the inflamed CNS in EAE had an upregulated expression of Th1 master regulator T-bet and Th1-associated chemokine receptor CXCR3, whereas Treg derived from the inflamed lung in AAI had an increased expression of Th2 master regulator GATA-3, lacked expression of T-bet and displayed decreased levels of CXCR3. This specialized and activated phenotype was restricted to tissue-derived Treg. The importance of appropriate Treg phenotype for effective suppression was suggested by the observed inability of CNS-derived Treg to inhibit AAI. A different Treg subset, TGF-β-induced Treg (iTreg), was shown to express high levels of T-bet and CXCR3, but not GATA-3 upon induction in vitro. iTreg effectively suppressed both Th1 and Th2 types of inflammation and the antigenreactivity was key to this. This thesis demonstrates that Treg are capable of acquiring a distinct phenotype corresponding with a CD4+ T cell response driving inflammatory disease and identifies antigen-reactivity as key to the efficacious suppression of inflammation. It also highlights substantial phenotypic differences between iTreg and naturally-occurring Treg which could be associated with different modes of suppression.
Supervisor: Anderton, Stephen ; O'Connor, Richard Sponsor: Wellcome Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.676208  DOI: Not available
Keywords: autoimmunity ; allergic airways inflammation ; regulatory T cells
Share: