Use this URL to cite or link to this record in EThOS:
Title: Use of an ex vivo model of human colorectal tumours to study response to the MEK1/2 inhibitor AZD6244
Author: Novo, Sonia Marisa
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Colorectal cancer is the second most common cause of cancer death in Western Europe and North America. Current therapies are largely ineffective and are associated with considerable morbidity. Activating mutations in KRAS and BRAF genes are frequent in colorectal cancer, especially at later stages of the disease, and result in constitutive activity of the MAPK pathway, leading to increased proliferation and tumour survival. The MEK1/2 inhibitor AZD6244, that targets the MAPK pathway downstream of these mutations, has been tested as novel therapy for colorectal cancer. However, clinical trials have been disappointing due to an apparent intrinsic and/or acquired resistance to treatment. Mechanisms underlying this resistance have been studied using cell lines and tumour xenografts. However, the relevance of these data to advanced human colorectal cancer is unclear. One of the difficulties in testing and developing novel therapies for colorectal cancer is the lack of representative models of human disease. Thus, the initial aim of my PhD was to develop a method to culture human colorectal cancers ex vivo in order to use this as a platform for investigating response to AZD6244 and other therapies. These studies indicated that regardless of growth conditions, colonic tumour explants suffered extensive apoptosis in the first 24h in culture, which limited their application in drug response assays. Therefore, as an alternative to long term culture of human colorectal explants, I tested the effects of AZD6244 using acute treatments. Twenty three fresh colonic tumours were obtained from patients and treated for 1h with AZD6244 ex vivo in dose response studies. In all samples, MEK1/2 inhibition occurred within 1h of treatment. In one group of particularly sensitive tumours, the drug also had a distinct phenotypic effect. In these tumours, I found that the agent induced a dose-dependent decrease in proliferation and increase in apoptosis within 1h of treatment. Analysis of markers for this sensitivity indicated it was not clearly dependent of the presence of KRAS or BRAF mutations, which have previously been shown to confer sensitivity. Other markers of sensitivity / resistance were also examined. In addition to studies with AZD6244 alone, I examined the combined effects of this agent and aspirin in colon cancer cells lines and in tumour explants, with promising results. Whilst the use of fresh patient tumour tissue has some technical and logistical challenges, these data suggest that such methodologies are worthy of further investigation as a means to examine determinants of sensitivity and resistance to novel therapies, or their likely activity in combination.
Supervisor: Dunlop, Malcolm ; Stark, Lesley Sponsor: Biotechnology and Biological Sciences Research Council (BBSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: MEK1/2 ; MAPK pathway ; KRAS mutations ; BRAF mutations ; proliferation ; apoptosis