Use this URL to cite or link to this record in EThOS:
Title: Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and CNS remyelination
Author: Natrajan, Muktha Sundar
ISNI:       0000 0004 5372 1223
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Remyelination is a regenerative process that occurs through the formation of myelin sheaths by oligodendrocytes, which are recruited as oligodendrocyte progenitor cells (OPCs) after demyelination in diseases such as Multiple Sclerosis (MS).A key environmental factor regulating OPC differentiation is the fate of myelin debris generated during demyelination. Myelin debris contains inhibitors of OPC differentiation and thus its clearance by phagocytic macrophages is an important component of creating a lesion environment conducive to remyelination. The efficiency of debris clearance declines with age, contributing to the age-associated decline in remyelination. Therefore, understanding the mechanisms of the age-related decline in myelin debris phagocytosis is important for devising means to therapeutically reverse the decline in remyelination. The aim of this study was to determine the functional/molecular differences between young and old phagocytes involved in myelin debris clearance, thereby identifying therapeutically modifiable pathways associated with efficient myelin debris phagocytosis. In this study, we show that expression of genes involved in the retinoid X receptor (RXR) and peroxisome proliferator-activated receptor (PPAR) pathways are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages. Disruption of RXR and PPAR using synthetic antagonists in young macrophages mimics ageing by reducing myelin debris uptake. Macrophage-specific RXR? knockout mice revealed that loss of RXR function in young mice caused delayed myelin debris uptake and slowed remyelination. Alternatively, receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The FDA-approved agonists bexarotene and pioglitazone, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profiles in MS patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. Activation of these pathways also enhances immunoregulatory markers on monocytes from MS patients, further suggesting the regeneration-promoting capacity of activating these pathways in phagocytes. These results reveal the RXR/PPAR pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.
Supervisor: Not available Sponsor: Gates-Cambridge Scholarship ; NIH-Cambridge Partnership Program
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: Remyelination ; Ageing ; Multiple Sclerosis ; Retinoid X Receptor ; Myelin Debris ; Monocyte-derived macrophages