Use this URL to cite or link to this record in EThOS:
Title: Investigating the mechanisms underlying fixation durations during the first year of life : a computational account
Author: Saez de Urabain, Irati R.
ISNI:       0000 0004 5368 3685
Awarding Body: Birkbeck (University of London)
Current Institution: Birkbeck (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Infants’ eye-movements provide a window onto the development of cognitive functions over the first years of life. Despite considerable advances in the past decade, studying the mechanisms underlying infant fixation duration and saccadic control remains a challenge due to practical and technical constraints in infant testing. This thesis addresses these issues and investigates infant oculomotor control by presenting novel software and methods for dealing with low-quality infant data (GraFIX), a series of behavioural studies involving novel gaze-contingent and sceneviewing paradigms, and computational modelling of fixation timing throughout development. In a cross-sectional study and two longitudinal studies, participants were eye-tracked while viewing dynamic and static complex scenes, and performed gap-overlap and double-step paradigms. Fixation data from these studies were modelled in a number of simulation studies with the CRISP model of fixation durations in adults in scene viewing. Empirical results showed how fixation durations decreased with age for all viewing conditions but at different rates. Individual differences between long- and short-lookers were found across visits and viewing conditions, with static images being the most stable viewing condition. Modelling results confirmed the CRISP theoretical framework’s applicability to infant data and highlighted the influence of both cognitive processing and the developmental state of the visuo-motor system on fixation durations during the first few months of life. More specifically, while the present work suggests that infant fixation durations reflect on-line perceptual and cognitive activity similarly to adults, the individual developmental state of the visuo-motor system still affects this relationship until 10 months of age. Furthermore, results suggested that infants are already able to program saccades in two stages at 3.5 months: (1) an initial labile stage subject to cancellation and (2) a subsequent non-labile stage that cannot be cancelled. The length of the non-labile stage decreased relative to the labile stage especially from 3.5 to 5 months, indicating a greater ability to cancel saccade programs as infants grew older. In summary, the present work provides unprecedented insights into the development of fixation durations and saccadic control during the first year of life and demonstrates the benefits of mixing behavioural and computational approaches to investigate methodologically challenging research topics such as oculomotor control in infancy.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available