Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667940
Title: The low energy phenomenology of a dark force
Author: Wallace, Christopher James
ISNI:       0000 0004 5364 1565
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis investigates an area of beyond the Standard Model (BSM) phenomenology associated with the presence of additional light, “weakly interacting slim particles” (WISPs). Particular attention is given to the hidden photon, the gauge boson associated with an additional U(1) gauge group that mixes kinetically with hypercharge. The theoretical foundation of the interactions studied lies in effective field theory, and the first part of the thesis investigates a so-far untested aspect of effective theories, namely effective non-locality in particle propagation. There are no observable effects of hidden photons if they are massless. We investigate the impact on experimental signatures in the case that the hidden photon gets its mass during compactification from a higher dimensional theory. WISPs make good dark matter candidates, and are especially compelling in light of the lack of observation of heavy WIMP (“weakly interacting massive particle”) dark matter. Nonetheless, it is shown that if WIMP dark matter is composed of a Dirac fermion that couples to the SM only through a pseudoscalar, indirect detection may be our only experimental window, and that it may already be appearing as a gamma ray excess at the Galactic Centre. There is considerable interest in dark matter searches at beam dump facilities, in particular for light dark matter coupled through a similarly light mediator particle. We investigate this set up in the context of the E613 beam dump experiment. Owing to the light mediator, the low-Q^2 kinematic region of deep inelastic scattering is especially important. We present a new treatment of dark particle scattering in this region via a light vector mediator (such as a hidden photon), and find that it enhances constraints.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667940  DOI: Not available
Share: