Use this URL to cite or link to this record in EThOS:
Title: Design and time-domain analysis of antenna array for UWB imaging application
Author: Zhou, Min
ISNI:       0000 0004 5360 3761
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
UWB technology has been developing in imaging applications. For security imaging applications, it is vital to detect and image metallic targets concealed in bag at airports, subway stations or other public environments. To reduce the cost of the deployment of X-ray machines, a novel UWB imaging system has been developed, including the design of the UWB rotating antenna array, the design of RF circuits and the implementation of the two-dimensional delay-and-sum (DAS) image reconstruction method. Two types of UWB antennas, the circular-edge antipodal Vivaldi antenna and the corrugated balanced antipodal Vivaldi antenna (BAVA) have been designed and studied in both frequency domain and time domain. Both of them can work across UWB frequency range from 3.1 GHz to 10.6 GHz, and have directional radiation patterns. The corrugated BAVA with smaller physical size has been improved to have a relative high gain around 7 dBi across the operating frequency range. It also causes less distortion to signals in the time domain. So the corrugated BAVA is used as the antenna element in the UWB rotating antenna array. The UWB rotating antenna array comprises one central transmitting antenna and four receiving antennas. The receiving antennas, which rotate around the central transmitting antenna, are placed side-by-side on a straight arm. The equivalent antenna elements in space are increased by the rotation of the antenna array. The two-dimensional image reconstruction method has been developed based on DAS algorithm. This UWB imaging system can detect and reconstruct the image of the single and pairs of metallic targets concealed in bag. The smallest single target with the size of 4 cm × 4 cm × 1 cm can be reconstructed in images at a maximum distance of 30 cm away from the system. It can achieve 6 cm in cross-range resolution and 15 cm in down-range resolution. Therefore, the feasibility of the proposed UWB imaging system has been proved.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electronic Engineering ; Security systems ; Weapon detection ; UWB imaging system ; Antennas