Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667302
Title: Novel molecular imprinted nanogels as drug delivery vehicles for tamoxifen
Author: Ray, Judith Victoria
ISNI:       0000 0004 5359 8739
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The field of nanomedicine has witnessed an incredible expansion, from a total market value in 2003 of $500 million expected to rise to $160 billion by 2015 (Global Industry Analysts, Inc.). The nanomedicine industry is forecasted to grow and have a significant impact on the economy, with sectors such as biomaterials, diagnostics and drug delivery expected to play a major role. This thesis gives a detailed account of the synthesis and characterisation of molecularly imprinted nanogels for drug delivery. Their toxicity and potential use as a targeted carrier to cancerous cells is evaluated. Initially an overview of nanomaterials and their uses in many areas such as agriculture, energy storage and technology are discussed. The impact of nanomaterials on the life sciences is examined; in particular their application in drug delivery is focussed upon. Chapters 2, 3 and 4 make up the results and discussion of this work. Chapter 2 focuses on developing the synthesis of the acrylamide based nanogels and, vitally, incorporating a suitable fluorescent tag in order to track the nanogels in vitro and in vivo. Fundamentally toxicity studies carried out on the nanogels, both in vitro and in vivo in Danio rerio (zebrafish) are reported in Chapter 3 to ensure the nanogels are biocompatible. Chapter 4 introduces an innovative approach, molecular imprinting, to incorporating a drug into the nanogels. The upload and release of Tamoxifen (a drug used to treat breast cancer) at reduced pH, was also analysed. Finally future development of the carrier is discussed and key issues that need to be addressed.
Supervisor: Not available Sponsor: QMUL ; EPSRC ; European Commission
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667302  DOI: Not available
Keywords: Biological and Chemical Sciences ; Nanomedicine ; drug delivery carriers ; Nanogels
Share: