Use this URL to cite or link to this record in EThOS:
Title: Improved ultra wideband communication system through adaptive modulation and spatial diversity
Author: Magani, Musa Gayaunan
ISNI:       0000 0004 5359 6530
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Advances in Multimedia communications have shown the need for high data rate wireless links over short distances. This is to enhance flexibility, accessibility, portability and mobility of devices in home and enterprise environment thereby making users more productive. In 2004, the WiMedia group proposed the Multiband Orthogonal Frequency Division Multiplex Ultra Wideband (MB-OFDM UWB) system with a target of delivering data rate of 480Mbps over 3 metres. However, by now no existing commercial UWB product can meet this proposed specification. The project aims to investigate the reason why UWB technology has failed to realise its potential by carrying out detailed analysis and to seek ways of solving the technical problems. Detailed system analyses were carried out on the UWB technology using a commercial UWB product and a MB-OFDM UWB Evaluation kit. UWB channel measurements of different scenarios were carried out in order to characterise both time varying and time invariant channels. The scenarios are the realistic environments where UWB devices are operating with human subjects in various movement patterns. It gives insight into the effects of human object blocking on the MB-OFDM system performance and estimates an acceptable feedback rate in a UWB time varying channel when implementing an adaptive modulation. The adaptive modulation was proposed and implemented in the MB-OFDM system model to demonstrate the improved Bit Error Rate (BER) performance. Modulating bits are varied across the sub-channels depending on the signal to noise ratio (SNR). Sub-channels experiencing severe fading employ lower or no bit-loading while sub-channels with little or no fading utilise higher bit-loading to maintain a constant system data rate. Spatial diversity was employed to exploit different properties of the radio channel to improve performance. Good diversity gain of two receiving diversity systems using maximal ratio combining and antenna selection techniques is demonstrated in the measurements with the different antenna orientations. An antenna selection circuit is designed and implemented working together with AT90CAP9 UWB Evaluation kit, verifying an improved performance of the UWB system in an indoor environment. The maximal ratio combining technique is also implemented and demonstrated to give a better system performance on a test bed after post-processing.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electronic Engineering ; Ultra Wideband ; Adaptive Modulation ; Spatial Diversity