Use this URL to cite or link to this record in EThOS:
Title: Carbohydrate-degrading enzymes from the thermophilic ethanologen Geobacillus thermoglucosidasius
Author: Espina Silva, Giannina
ISNI:       0000 0004 5349 0701
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
It is widely known that fossil fuels are limited; consequently, the generation of new sources of energy in a clean and environmentally friendly manner is a research priority. Bioethanol appears to be one potential solution, especially second-generation production from renewable biomass. In order to use lignocellulosic feedstock to produce bioethanol, its polysaccharide components, cellulose and hemicellulose, must be hydrolysed into soluble sugars, which can then be converted into ethanol by fermentative microorganisms such as Geobacillus thermoglucosidasius TM242 used by the company ReBio Technologies Ltd. To date, the cost of commercial enzymes used during the hydrolysis process remains a major economic consideration in the production of second-generation bioethanol as an alternative fuel. The research project presented in this thesis aims to improve this rate-limiting step of microbial bioethanol production through an investigation of the different enzymes associated with hemicellulose hydrolysis. Firstly, the TM242 genome sequence revealed a number of genes encoding glycoside-hydrolases. Six of these genes were cloned and expressed in E. coli and the recombinant enzymes characterised; three of them, two β-xylosidases and an α arabinofuranosidase, are relevant to xylan hydrolysis, and were found to be highly active and thermostable. Crystallisation of one of the β-xylosidases permitted the determination of a high-resolution (1.7 Å) structure of the apo-enzyme along with a lower resolution (2.6 Å) structure of the enzyme-substrate complex, resulting in the first reported structure of a GH52 family member (Espina et al., 2014). Secondly, as the TM242 microorganism lacks xylanase enzymes, four genes encoding xylanases from closely-related Geobacillus strains were cloned and expressed in E. coli, with one of them being also successfully cloned and expressed in G. thermoglucosidasius TM242. This heterologous xylanase was secreted in active form representing an enhanced biomass utilisation by TM242. In conclusion, it is felt that the findings presented here have the potential to make a valuable contribution towards second-generation bioethanol production.
Supervisor: Danson, Michael ; Crennell, Susan Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Geobacillus ; Bioethanol ; Xylanase ; Beta-xylosidase ; Glycosidase ; Thermophiles