Use this URL to cite or link to this record in EThOS:
Title: Transformation of the university examination timetabling problem space through data pre-processing
Author: Abdul Rahim, Siti Khatijah Nor
ISNI:       0000 0004 5365 2299
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research investigates Examination Timetabling or Scheduling, with the aim of producing good quality, feasible timetables that satisfy hard constraints and various soft constraints. A novel approach to scheduling, that of transformation of the problem space, has been developed and evaluated for its effectiveness. The examination scheduling problem involves many constraints due to many relationships between students and exams, making it complex and expensive in terms of time and resources. Despite the extensive research in this area, it has been observed that most of the published methods do not produce good quality timetables consistently due to the utilisation of random-search. In this research we have avoided random-search and instead have proposed a systematic, deterministic approach to solving the examination scheduling problem. We pre-process data and constraints to generate more meaningful aggregated data constructs with better expressive power that minimise the need for cross-referencing original student and exam data at a later stage. Using such aggregated data and custom-designed mechanisms, the timetable construction is done systematically, while assuring its feasibility. Later, the timetable is optimized to improve the quality, focusing on maximizing the gap between consecutive exams. Our solution is always reproducible and displays a deterministic optimization pattern on all benchmark datasets. Transformation of the problem space into new aggregated data constructs through pre-processing represents the key novel contribution of this research.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA 75 Electronic computers. Computer science