Use this URL to cite or link to this record in EThOS:
Title: Food industry supply chain planning with product quality indicators
Author: Mehdizadeh, Ali
ISNI:       0000 0004 5361 3775
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Quantitative supply chain modelling has contributed substantially to a number of fields, such as the automotive industry, logistics and computer hardware. The inherent methods and optimisation techniques could also be explored in relation to the food industry in order to offer potential benefits. One of the major issues of the food industry is to overcome supply seasonality and on-shelf demand. On the shelf demand is the consumer's in store demand which could also be seasonal. Objective of this work is to add flexibility to seasonal products (i.e. soup) in order to meet the on-shelf demand. In order to achieve this, a preparation process is introduced and integrated into the manufacturing system. This process increases the shelf-life of raw materials before starting the production process. This process, however, affects the quality of fresh raw materials and requires energy. Therefore, a supply chain model is developed, which is based on the link between the quality of the raw material and the processing conditions, which have an effect on the process' energy consumption and on the overall product quality. It is challenging to quantify the quality by looking at the processing conditions (degrees of freedom) and by linking it with energy in order to control and optimise the quality and energy consumption for each product. The degrees of freedom are defined differently for each process and state. Therefore, the developed model could be applied to all states and processes in order to generate an optimum solution. Moreover, based on the developed model, we have determined key factors in the whole chain, which are most likely to affect the product quality and consequently overall demand. There are two main quality indicator classes to be optimised, which are both considered in the model: static and time dependent indicators. Also, this work considers three different preparation processes - the air-dry, freeze-dry and freezing process - in order to increase the shelf-life of fresh raw materials and to add flexibility to them. A model based on the interrelationship between the quality and the processing conditions has been developed. This new methodology simplifies and enables the model to find the optimum processing conditions in order to obtain optimum quality across all quality indicators, whilst ensuring minimum energy consumption. This model is later integrated into the supply chain system, where it generates optimum solutions, which are then fed into the supply chain model. The supply chain model optimises the quality in terms of customer satisfaction, energy consumption and wastage of the system linked to environmental issues, and cost, so that the final products are more economical. In this system, both the manufacturing and inventory systems are optimised. This model is later implemented with a real world industrial case study (provided by the industrial collaborator). Two case studies are considered (soya milk and soup) and interestingly enough only one of them (soup) corresponds with this model. The advantage of this model is that it compares the two systems and then establishes which system generates an optimum end product.
Supervisor: Shah, Nilay Sponsor: Unilever (Firm)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral