Use this URL to cite or link to this record in EThOS:
Title: Future spatial audio : subjective evaluation of 3D surround systems
Author: Power, P.
ISNI:       0000 0004 5355 4365
Awarding Body: University of Salford
Current Institution: University of Salford
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Current surround systems are being developed to include height channels to provide the listener with a 3D listening experience. It is not well understood the impact the height channels will have on the listening experience and aspects associated with multichannel reproduction like localisation and envelopment or if there are any new subjective attributes concerned with 3D surround systems. Therefore in this research subjective factors like localisation and envelopment were investigated and then descriptive analysis was used. In terms of localisation it was found that for sources panned in the median plane localisation accuracy was not improved with higher order ambisonics. However for sources in the frontal plane higher order ambisonics improves localisation accuracy for elevated sound sources. It was also found that for a simulation of a number of 2D and 3D surround systems, using a decorrelated noise signal to simulate a diffuse soundfield, there was no improvement in envelopment with the addition of height. On the other hand height was found to improve the perception of envelopment with the use of 3D recorded sound scenes, although for an applause sample which had similar properties to that of the decorrelated noise sample there was no significant difference between 2D and 3D systems. Five attribute scales emerged from the descriptive analysis of which it was found that there were significant differences between 2D and 3D systems using the attribute scale size for both ambisonics and VBAP rendered systems. Also 3D higher order ambisonics significantly enhances the perception of presence. A final principal component analysis found that there were 2 factors which characterised the ambisonic rendered systems and 3 factors which characterised the VBAP rendered sound scenes. This suggests that the derived scales need to be used with a wider number of sound scenes in order to fully validate them.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Built and Human Environment ; Media, Digital Technology and the Creative Economy