Use this URL to cite or link to this record in EThOS:
Title: Expression and function of the formyl peptide receptor 2 in experimental myocardial infarct
Author: Bena, Stefania
ISNI:       0000 0004 5355 2327
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
In Acute Myocardial Infarction (AMI), inflammation is a prerequisite for healing but it can paradoxically extend tissue injury; hence it needs to be modulated. Here, we investigated the role of the pro resolving GPCR FPR2/ALX and its agonist Annexin A1 (AnxA1) in AMI using mice lacking of the Fpr2/3 genes and with an in-frame GFP gene ‘knocked-in’. We developed protocols aimed to determine GFP expression as an indication of Fpr2 gene activity. Also, the Left Anterior Descending Coronary Artery of male Fpr2/3 KO and littermate controls (WT) was occluded for 30min and re-opened for 90min. At the end tissue injury and inflammatory response were studied. A significant proportion of Fpr2/3 KO perished during the procedure. The rest survived up to 90 min and exhibited a larger infarct size, with higher troponin I and inflammation markers (KC, TNFα) than WT animals. At the end of reperfusion, Fpr2/3 KO displayed an unbalanced production of pro and anti-inflammatory lipids (higher PGE2, PGI2, LTB4 and attenuated PGA1, RvD2, LXA4) and a deregulated activation of the cardioprotective IL-6/JAK/STAT3 signalling. Administration of AnxA1 afforded cardioprotection (reduction of infarct size; Troponin I, Caspase3 activity and TNFα) in WT but not in Fpr2/3 KO. A parallel in vitro investigation on the functional FPR2/ALX domains required by AnxA1 and other agonists was also conducted. HEK-293 cells transfected with FPR1, FPR2/ALX and FPR1/FPR2 chimeric receptor were used and calcium flux, 4 pERK and gene modulation analysed. AnxA1 required the N-terminus and the II and III extracellular loops of FPR2/ALX to evoke canonical responses. SAA interacted/activated the I and the II extracellular loops of FPR2/ALX, whereas the compound 43 suffices the I extracellular loop. In summary, the FPR2/AnxA1 pathway exerts a protective role in AMI. AnxA1 mimetic that activated selective FPR2/ALX domains can be synthetize to prevent tissue damage caused by AMI.
Supervisor: Not available Sponsor: Medical Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Acute Myocardial Infarction ; inflammatory response ; Lipid mediators ; Acute Inflammation and Resolution ; Formyl Peptide Receptor family ; GFP expression