Use this URL to cite or link to this record in EThOS:
Title: Progressive collapse mitigation using CMA in RC framed buildings
Author: Punton, Ben
ISNI:       0000 0004 5363 9238
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Mitigation of progressive collapse after an initial failure has become a primary concern of engineers in recent years. Often alternative load paths are sought to redistribute load from the damaged area. It has been recognised for some time that the omission of compressive membrane action (CMA), also termed ‘arching action’, can lead to a significant underestimation of load capacity. An investigation has been conducted to ascertain whether the additional load carrying capacity from CMA can provide an inherent alternative load path to aid robustness. A series of scaled specimens with industry standard detailing have been designed for an experimental investigation. Reinforced concrete elements were modelled in the double span scenario once an intermediate column has been removed. The test rig used allows the central support to be removed followed by the application of a point load applied at midspan; the system is determinate including measurement of the horizontal reaction. Subsequent to the flexural response two modes of membrane action are induced, initially compressive until tensile membrane extends load capacity at high values of deflection. The response during the latter tensile phase is outside the scope of this research. Comparisons of experimental data with analytical methods inclusive of CMA have demonstrated that whilst conservative the method by Merola (2009) provides a reasonable prediction. This method has been utilised in a study of a series of flat slab structures with a range of column spacings. The inherent restraint stiffness provided by the surrounding slab and frame has been quantified using FEA and has allowed for the extent to which CMA can improve the robustness of a structure to be determined.
Supervisor: Moy, Stuart Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TH Building construction