Use this URL to cite or link to this record in EThOS:
Title: Patch-based segmentation with spatial context for medical image analysis
Author: Wang, Zehan
ISNI:       0000 0004 5357 1405
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Accurate segmentations in medical imaging form a crucial role in many applications from pa- tient diagnosis to population studies. As the amount of data generated from medical images increases, the ability to perform this task without human intervention becomes ever more de- sirable. One approach, known broadly as atlas-based segmentation, is to propagate labels from images which have already been manually labelled by clinical experts. Methods using this ap- proach have been shown to be e ective in many applications, demonstrating great potential for automatic labelling of large datasets. However, these methods usually require the use of image registration and are dependent on the outcome of the registration. Any registrations errors that occur are also propagated to the segmentation process and are likely to have an adverse e ect on segmentation accuracy. Recently, patch-based methods have been shown to allow a relaxation of the required image alignment, whilst achieving similar results. In general, these methods label each voxel of a target image by comparing the image patch centred on the voxel with neighbouring patches from an atlas library and assigning the most likely label according to the closest matches. The main contributions of this thesis focuses around this approach in providing accurate segmentation results whilst minimising the dependency on registration quality. In particular, this thesis proposes a novel kNN patch-based segmentation framework, which utilises both intensity and spatial information, and explore the use of spatial context in a diverse range of applications. The proposed methods extend the potential for patch-based segmentation to tolerate registration errors by rede ning the \locality" for patch selection and comparison, whilst also allowing similar looking patches from di erent anatomical structures to be di erentiated. The methods are evaluated on a wide variety of image datasets, ranging from the brain to the knees, demonstrating its potential with results which are competitive to state-of-the-art techniques.
Supervisor: Rueckert, Daniel Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral