Use this URL to cite or link to this record in EThOS:
Title: Towards low power radio localisation
Author: Goverdovsky, Valentin
ISNI:       0000 0005 0731 9994
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
This work investigates the use of super-resolution algorithms for precision localisation and long-term tracking of small subjects, like rodents. An overview is given of a variety of techniques for positioning in use today, namely received signal strength, time of arrival, time difference of arrival and direction of arrival (DoA). Based on the analysis, it is concluded that the direction finding signal subspace based techniques are most appropriate for the purposes of our system. The details of the software defined radio (SDR) antenna array testbed development, build, characterisation and performance evaluation are presented. The results of direction finding experiments in the screened anechoic chamber emulating open-space propagation are discussed. It is shown that such testbed is capable of locating sources in the vicinity of the array with high precision. It can estimate the DoAs of more simultaneously working transmitters than antennas in the array, by employing spread spectrum techniques, and readily accommodates very low power sources. Overall constraints on the system are such that the operational range must be around 50-100 m. The transmitter must be small both volumetrically and in terms of weight. It also has to be operational over an extended period of around 1 year. The implications of these are that very small antennas and batteries must be used, which are usually accompanied by very low transmission efficiencies and tiny capacities, respectively. Based on the above, the use of ultra-low power oscillator transmitters, as first cut prototypes of the tag, is proposed. It is shown that the Clapp, Colpitts, Pierce and Cross-coupled architectures are adequate. A thorough analysis of these topologies is provided with full details of tag and antenna co-design. Finally the performance of these architectures is evaluated through simulations with respect to power output, overall efficiency and phase noise.
Supervisor: Papavassiliou, Christos Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral