Use this URL to cite or link to this record in EThOS:
Title: Tissue expression and functional insights into HIF prolyl hydroxylase domain enzymes
Author: Wijeyekoon, Jananath Bhathiya
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
This research programme investigated the expression of prolyl hydroxylase (PHD) proteins in rodent tissues. The importance of PHD enzymes lies in their ability to render oxygen sensitivity to Hypoxia inducible factor (HIF), the principal mediator of intracellular oxygen homeostasis. The first part of this study focused on developing and validating anti-sera capable of detecting PHD proteins in rodent tissues. With these reagents, it was possible to assess the relative expression of each PHD protein in a number of different rat tissues. PHD2 was the most abundant isoform in all tissues studied. In contrast, an abundance of PHD1 was observed only in testis and skeletal muscle. A number of different tissue species of PHD3 were identified and their abundance was found to vary between different tissues. These observations provide further evidence of the principal role of PHD2 in regulating HIF in vivo, but also point towards additional roles for PHD1 and PHD3 in selected tissues. They highlight the potential for there being a complex interplay between different PHD enzymes which could, in the future, prove potential targets for therapeutic manipulation. This study also provides additional insights into the mechanisms underlying the phenotypes observed in PHD deletional mouse models which appear, in many cases, to be directly related to the abundance of a given PHD isoform. The emerging role of PHD3 as a promoter of sympathetic lineage apoptosis prompted further study of PHD3 expression in rat neuronal tissues. An abundance of PHD3 was demonstrated throughout the rat sympathetic nervous system, a finding which appeared at odds with its known role as a promoter of neuronal apoptosis and resulted in a series of collaborative studies which demonstrated a sympatho-adrenal phenotype in wild type compared to PHD3-/- mice. Further collaborative studies utilising wild type mice and those deleted of specific PHD isoforms, were carried out to assess the significance of the abundance of PHD3 and PHD1 noted here in rat hippocampus and testis respectively. While neither study demonstrated statistically significant phenotypes, these observations remain of interest and areas for future research.
Supervisor: Pugh, Christopher William Sponsor: Medical Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Medical Sciences ; Clinical laboratory sciences ; hypoxia inducible factor (HIF) ; prolyl hydroxylase domain proteins (PHD)