Use this URL to cite or link to this record in EThOS:
Title: Aspects of the Ising and tricritical Ising models
Author: Giokas, Philip
Awarding Body: King's College London (University of London)
Current Institution: King's College London (University of London)
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is concerned with several aspects of the Ising and tri-critical Ising models in two-dimensions. These are much-studied models relevant in both condensed matter physics as descriptions of the critical phenomena of two- dimensional systems and in String theory as building blocks of the string world sheet theory. The first part of the thesis is concerned with the derivation of differential equations for the critical four-point function in the Ising model. We present a method which provides the well-known standard solutions by a new and efficient route. The second part of the thesis is concerned with off-critical behaviour, and in particular the numerical study of perturbations of conformal field theory through the truncated conformal space approach. We show that the coupling constant undergoes significant renormalization in this scheme, and in particular the Ising model can be found as a fixed point for a finite value of the bare coupling constant. The renormalization group equations we find are of general use in the TCSA approach. The final part of the thesis considers off-critical boundary conditions in the tri-critical Ising model. We study them using a variant of the mean-field method and find a qualitative description of the space of boundary conditions that is in accord with the exact conformal field theory description. This is both a test of the method and its applicability in new domains, and also shows that previously published results are in error.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available