Use this URL to cite or link to this record in EThOS:
Title: Generative probabilistic models for object segmentation
Author: Eslami, Seyed Mohammadali
ISNI:       0000 0004 5367 4228
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
One of the long-standing open problems in machine vision has been the task of ‘object segmentation’, in which an image is partitioned into two sets of pixels: those that belong to the object of interest, and those that do not. A closely related task is that of ‘parts-based object segmentation’, where additionally each of the object’s pixels are labelled as belonging to one of several predetermined parts. There is broad agreement that segmentation is coupled to the task of object recognition. Knowledge of the object’s class can lead to more accurate segmentations, and in turn accurate segmentations can be used to obtain higher recognition rates. In this thesis we focus on one side of this relationship: given the object’s class and its bounding box, how accurately can we segment it? Segmentation is challenging primarily due to the huge amount of variability one sees in images of natural scenes. A large number of factors combine in complex ways to generate the pixel intensities that make up any given image. In this work we approach the problem by developing generative probabilistic models of the objects in question. Not only does this allow us to express notions of variability and uncertainty in a principled way, but also to separate the problems of model design and inference. The thesis makes the following contributions: First, we demonstrate an explicit probabilistic model of images of objects based on a latent Gaussian model of shape. This can be learned from images in an unsupervised fashion. Through experiments on a variety of datasets we demonstrate the advantages of explicitly modelling shape variability. We then focus on the task of constructing more accurate models of shape. We present a type of layered probabilistic model that we call a Shape Boltzmann Machine (SBM) for the task of modelling foreground/background (binary) and parts-based (categorical) shapes. We demonstrate that it constitutes the state-of-the-art and characterises a ‘strong’ model of shape, in that samples from the model look realistic and that it generalises to generate samples that differ from training examples. Finally, we demonstrate how the SBM can be used in conjunction with an appearance model to form a fully generative model of images of objects. We show how parts-based object segmentations can be obtained simply by performing probabilistic inference in this joint model. We apply the model to several challenging datasets and find that its performance is comparable to the state-of-the-art.
Supervisor: Williams, Chris Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Machine learning ; Vision ; Segmentation