Use this URL to cite or link to this record in EThOS:
Title: Dynamic behaviour of dowel-type connections under in-service vibration
Author: Reynolds, Thomas Peter Shillito
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
This study investigated the vibration serviceability of timber structures with dowel-type connections. It addressed the use of such connections in cutting-edge timber structures such as multi-storey buildings and long-span bridges, in which the light weight and flexibility of the structure make it possible that vibration induced by dynamic forces such as wind or footfall may cause discomfort to occupants or users of the structure, or otherwise impair its intended use. The nature of the oscillating force imposed on connections by this form of vibration was defined based on literature review and the use of established mathematical models. This allowed the appropriate cyclic load to be applied in experimental work on the most basic component of a dowel-type connection: a steel dowel embedding into a block of timber. A model for the stiffness of the timber in embedment under this cyclic load was developed based on an elastic stress function, which could then be used as the basis of a model for a complete connector. Nonlinear and time-dependent behaviour was also observed in embedment, and a simple rheological model incorporating elastic, viscoelastic and plastic elements was fitted to the measured response to cyclic load. Observations of the embedment response of the timber were then used to explain features of the behaviour of complete single- and multiple-dowel connections under cyclic load representative of in-service vibration. Complete portal frames and cantilever beams were tested under cyclic load, and a design method was derived for predicting the stiffness of such structures, using analytical equations based on the model for embedment behaviour. In each cyclic load test the energy dissipation in the specimen, which contributes to the damping in a complete structure, was measured. The analytical model was used to predict frictional energy dissipation in embedment, which was shown to make a significant contribution to damping in single-dowel connections. Based on the experimental results and analysis, several defining aspects of the dynamic response of the complete structures, such as a reduction of natural frequency with increased amplitude of applied load, were related to the observed and modelled embedment behaviour of the connections.
Supervisor: Harris, Richard ; Chang, Wen-Shao Sponsor: University of Bath ; Atelier One
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: timber ; dowel ; connection ; dynamic ; vibration ; damping ; stiffness ; serviceability ; wind ; footfall ; tall building ; screw ; embedment ; softening ; modal analysis ; modal testing